販売価格
販売中
お取り寄せお取り寄せの商品となります
入荷の見込みがないことが確認された場合や、ご注文後40日前後を経過しても入荷がない場合は、取り寄せ手配を終了し、この商品をキャンセルとさせていただきます。
| フォーマット | 書籍 |
| 発売日 | 2025年07月02日 |
| 国内/輸入 | 国内 |
| 出版社 | 近代科学社 |
| 構成数 | 1 |
| パッケージ仕様 | - |
| SKU | 9784764907515 |
| ページ数 | 232 |
| 判型 | B5変形 |
構成数 : 1枚
1 中学・高校数学のおさらい~AI・機械学習に必要な計算は四則演算だけ!
1.1 距離を求めよう~ 四則演算、べき乗、平方根の利用
1.2 複数の点の中心的な位置(重心)を求めよう~ Σ の利用、ベクトル
1.3 予測しよう~関数の利用
1.4 規模の大きな数をうまく扱うには~指数と対数
2 「変化」を見極めよう~微分法の基本から偏微分まで
2.1 この半年で株価はどれだけ上がったか?~平均変化率を求める
2.2 関数の平均変化率を求めよう~平均変化率を文字式で表す
2.3 間隔をどんどん縮めていくと……~いよいよ微分のお話!
2.4 簡単な例で微分にチャレンジしよう
2.5 二次関数を最小にするx の値を求めよう
2.6 多変数関数を微分する~偏微分にチャレンジ
3 相関・回帰分析超入門~微分法と連立方程式の応用
3.1 部屋の広さと家賃の関係は?~相関係数を求める
3.2 単回帰分析のしくみを理解し、予測を行う
3.3 重回帰分析のしくみを理解し、予測を行う
3.4 最小二乗法による重回帰分析の手順を一般化する
4 ニューラルネットワーク初歩の初歩~合成関数の微分法を活用する
4.1 合成関数とは
4.2 ニューラルネットワークを合成関数で表す
4.3 合成関数の微分法
4.4 合成関数を微分してみよう
5 ニューラルネットワークや回帰を簡潔に表現しよう~線形代数(ベクトル)の利用
5.1 ベクトルとは
5.2 ベクトルの定数倍と和の計算
5.3 ベクトルの内積を求める
5.4 ベクトルの大きさを求める
5.5 ベクトルの内積とコサイン類似度、相関係数
6 ニューラルネットワークや回帰をもっと簡潔に表現しよう~線形代数(行列)の利用
6.1 行列とは
6.2 行列の和と定数倍を求める
6.3 行列とベクトルの積も求められる
6.4 連立方程式やニューラルネットワークを行列とベクトルの積で表す
6.5 行列同士の内積を求める
6.6 単位行列と逆行列、そして、連立方程式ふたたび
7 マルコフ過程による株価予測/主成分分析~固有値と固有ベクトルの利用
7.1 一次変換と基底に関する基本
7.2 固有値と固有ベクトルを求めよう
7.3 マルコフ過程による株価の予測~行列の対角化
7.4 主成分分析による次元削減~分散・共分散行列の固有値と固有ベクトル
8 代表的な確率分布を理解しよう~確率と積分の計算
8.1 事象と確率~確率の表し方
8.2 ベルヌーイ分布~もっともシンプルな確率分布
8.3 二項分布~離散型確率分布の代表的な例
8.4 母数、確率質量関数、累積分布関数について知る
8.5 正規分布~連続型確率分布の代表的な例
8.6 積分の表し方と計算方法
8.7 ベータ分布~ベイズ統計でよく使われる分布
9 ベイズ統計超入門~条件付き確率からベイズ更新による母数の推定まで
9.1 独立と従属、そして条件付き確率とは
9.2 ベイズの定理で「原因」の確率を求める
9.3 ベイズの定理を一般的に表す~ベイズの展開公式
9.4 事前確率を事後確率に更新する~ベイズ更新
9.5 ベイズ統計と事前分布、事後分布
生成AIの登場により機械学習・深層学習などの用語が浸透した一方、原理の理解には難解な数学が壁となります。本書はその壁を乗り越える「ハシゴや脚立」として、理論に登場する数学をやさしく解説。中学・高校の数学知識を前提に、公式の意味や式の展開を丁寧に説明し、穴埋め問題も活用してじっくり学べる構成です。AI時代に必須の数学知識を無理なく習得できる、初学者必読の書籍。

※ショッピングカートおよび注文内容の確認画面にてフラゲのお届けになるかご確認ください。
※各種前払い決済をご利用の場合、フラゲは保証しておりません。
※フラゲは配送日時指定なしでご注文いただいた場合に限ります。
読み込み中にエラーが発生しました。
画面をリロードして、再読み込みしてください。
