販売価格
販売中
お取り寄せお取り寄せの商品となります
入荷の見込みがないことが確認された場合や、ご注文後40日前後を経過しても入荷がない場合は、取り寄せ手配を終了し、この商品をキャンセルとさせていただきます。
| フォーマット | 書籍 |
| 発売日 | 2018年03月07日 |
| 国内/輸入 | 国内 |
| 出版社 | KADOKAWA |
| 構成数 | 1 |
| パッケージ仕様 | - |
| SKU | 9784048930628 |
| ページ数 | 600 |
| 判型 | B5変形 |
構成数 : 1枚
第1章 はじめに
第I部 応用数学と機械学習の基礎
第2章 線形代数
第3章 確率と情報理論
第4章 数値計算
第5章 機械学習の基礎
第II部 深層ネットワーク:現代的な実践
第6章 深層順伝播型ネットワーク
第7章 深層学習のための正則化
第8章 深層モデルの訓練のための最適化
第9章 畳み込みネットワーク
第10章 系列モデリング:回帰結合型ニューラルネットワークと再帰型ネットワーク
第11章 実用的な方法論
第12章 アプリケーション
第III部 深層学習の研究
第13章 線形因子モデル
第14章 自己符号化器
第15章 表現学習
第16章 深層学習のための構造化確率モデル
第17章 モンテカルロ法
第18章 分配関数との対峙
第19章 近似推論
第20章 深層生成モデル
AI研究の一分野として注目を集める深層学習(ディープラーニング)に関する教科書として世界的な評価を受けている解説書。深層学習の理解に必要な数学、ニューラルネットワークの基礎から、CNN(畳み込みニューラルネットワーク)やRNN(回帰結合型ニューラルネットワーク)などのすでに確立した手法、さらに深層学習の研究まで、深層学習の基礎を理論を含めてしっかり学習したい人に最適な内容になっている。近年の深層学習研究をリードする著名な研究者たちが執筆した入門者必読の書である。

※ショッピングカートおよび注文内容の確認画面にてフラゲのお届けになるかご確認ください。
※各種前払い決済をご利用の場合、フラゲは保証しておりません。
※フラゲは配送日時指定なしでご注文いただいた場合に限ります。
読み込み中にエラーが発生しました。
画面をリロードして、再読み込みしてください。
