書籍
書籍

詳解 3次元点群処理 Pythonによる基礎アルゴリズムの実装

0.0

販売価格

¥
3,080
税込
還元ポイント

販売中

お取り寄せ
発送目安
2日~14日

お取り寄せの商品となります

入荷の見込みがないことが確認された場合や、ご注文後40日前後を経過しても入荷がない場合は、取り寄せ手配を終了し、この商品をキャンセルとさせていただきます。

フォーマット 書籍
発売日 2022年10月05日
国内/輸入 国内
出版社講談社
構成数 1
パッケージ仕様 -
SKU 9784065293430
ページ数 192
判型 B5変形

構成数 : 1枚

目次

第1章 はじめに
1.1 3次元世界について
1.2 本書について
1.3 3次元計測原理
1.4 3次元センサの紹介
章末問題

第2章 点群処理の基礎
2.1 ファイル入出力
2.2 描画
2.3 回転・並進・スケール変換
2.4 サンプリング
2.5 法線推定
章末問題

第3章 特徴点・特徴量の抽出
3.1 特徴点(キーポイント)
3.2 大域特徴量
3.3 局所特徴量
章末問題

第4章 点群レジストレーション(位置合わせ)
4.1 最近傍点の探索(単純な方法)
4.2 最近傍点の探索(kd-treeによる方法)
4.3 ICPアルゴリズム
4.4 ICPアルゴリズムの実装(Point-to-Point)
4.5 ICPアルゴリズムの実装(Point-to-Plane)
章末問題

第5章 点群からの物体認識
5.1 特定物体認識と一般物体認識
5.2 特定物体の姿勢推定
5.3 一般物体の姿勢推定
5.4 プリミティブ検出
5.5 セグメンテーション
章末問題

第6章 深層学習による3次元点群処理
6.1 深層学習の基礎
6.2 PyTorch Geometricによる3次元点群の扱い
6.3 PointNet
6.4 点群の畳み込み
6.5 最新研究動向
章末問題

第7章 点群以外の3次元データ処理
7.1 RGBD画像処理
7.2 ボクセルデータ処理
7.3 メッシュデータ処理
7.4 多視点画像処理
7.5 Implicit Functionを用いた3次元形状表現
章末問題

  1. 1.[書籍]

基礎的な点群処理から、ICPアルゴリズム、物体認識、PointNetまでをPythonで学ぼう!★章末問題付き★

・Open3Dを使用し、Pythonプログミングとともに平易に解説。
・サンプルコードをサポートページから提供したので、すぐに実践できる!
・最終章では、RGBD画像、ボクセルデータ、メッシュデータ、多視点画像の3次元データ処理も解説。

【主な内容】
第1章 はじめに
第2章 点群処理の基礎
第3章 特徴点・特徴量の抽出
第4章 点群レジストレーション(位置合わせ)
第5章 点群からの物体認識
第6章 深層学習による3次元点群処理
第7章 点群以外の3次元データ処理

作品の情報

メイン

メンバーズレビュー

レビューを書いてみませんか?

読み込み中にエラーが発生しました。

画面をリロードして、再読み込みしてください。