販売価格
販売中
お取り寄せお取り寄せの商品となります
入荷の見込みがないことが確認された場合や、ご注文後40日前後を経過しても入荷がない場合は、取り寄せ手配を終了し、この商品をキャンセルとさせていただきます。
| フォーマット | 書籍 |
| 発売日 | 2022年10月05日 |
| 国内/輸入 | 国内 |
| 出版社 | 講談社 |
| 構成数 | 1 |
| パッケージ仕様 | - |
| SKU | 9784065293430 |
| ページ数 | 192 |
| 判型 | B5変形 |
構成数 : 1枚
目次
第1章 はじめに
1.1 3次元世界について
1.2 本書について
1.3 3次元計測原理
1.4 3次元センサの紹介
章末問題
第2章 点群処理の基礎
2.1 ファイル入出力
2.2 描画
2.3 回転・並進・スケール変換
2.4 サンプリング
2.5 法線推定
章末問題
第3章 特徴点・特徴量の抽出
3.1 特徴点(キーポイント)
3.2 大域特徴量
3.3 局所特徴量
章末問題
第4章 点群レジストレーション(位置合わせ)
4.1 最近傍点の探索(単純な方法)
4.2 最近傍点の探索(kd-treeによる方法)
4.3 ICPアルゴリズム
4.4 ICPアルゴリズムの実装(Point-to-Point)
4.5 ICPアルゴリズムの実装(Point-to-Plane)
章末問題
第5章 点群からの物体認識
5.1 特定物体認識と一般物体認識
5.2 特定物体の姿勢推定
5.3 一般物体の姿勢推定
5.4 プリミティブ検出
5.5 セグメンテーション
章末問題
第6章 深層学習による3次元点群処理
6.1 深層学習の基礎
6.2 PyTorch Geometricによる3次元点群の扱い
6.3 PointNet
6.4 点群の畳み込み
6.5 最新研究動向
章末問題
第7章 点群以外の3次元データ処理
7.1 RGBD画像処理
7.2 ボクセルデータ処理
7.3 メッシュデータ処理
7.4 多視点画像処理
7.5 Implicit Functionを用いた3次元形状表現
章末問題
基礎的な点群処理から、ICPアルゴリズム、物体認識、PointNetまでをPythonで学ぼう!★章末問題付き★
・Open3Dを使用し、Pythonプログミングとともに平易に解説。
・サンプルコードをサポートページから提供したので、すぐに実践できる!
・最終章では、RGBD画像、ボクセルデータ、メッシュデータ、多視点画像の3次元データ処理も解説。
【主な内容】
第1章 はじめに
第2章 点群処理の基礎
第3章 特徴点・特徴量の抽出
第4章 点群レジストレーション(位置合わせ)
第5章 点群からの物体認識
第6章 深層学習による3次元点群処理
第7章 点群以外の3次元データ処理

※ショッピングカートおよび注文内容の確認画面にてフラゲのお届けになるかご確認ください。
※各種前払い決済をご利用の場合、フラゲは保証しておりません。
※フラゲは配送日時指定なしでご注文いただいた場合に限ります。
読み込み中にエラーが発生しました。
画面をリロードして、再読み込みしてください。
